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PREFACE

This is a final report of a study entitled "Stochastic Analy-
. sis of Future Vehicle Populations," prepared for the Transportation
Systems Center of the U.S. Department of Transportation. The pur-
pose was to build a stochastic model to predict future vehicle popu-
lations by age and by type. That model is referred to in this report
as the FAPS Model (Future Automobile Population Stochastic Model).
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Safety Research staff, including Kent B. Joscelyn, Barbara C.
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Executive Summary

Project Objective

The principal objectives of this study were to describe a
method of investigating the uncertainties inherent in future vehi-
cle populations and to build a new model of vehicle survival. To
accomplish this, a stochastic model containing a new model of new
vehicle survival was constructed for the forecasting of domestic
vehicle populations. Such a model may be used to investigate the
uncertainties in future populations created by, for example, the
application of new strategies by private industry and government to
promote new designs for safer, cleaner, and more fuel-efficient
vehicles. The uncertain elements in these populations are the num-
ber of vehicles by age and type.

Summary of Approach

Uncertainty in forecasts of future vehicle populations are
caused, in large part, by the uncertainties in the occurrence times
and levels of impacts of future unplanned events, and by the uncer-
tainties involved in describing the impacts of future planned and

unplanned events. A planned event is a controllable event or
strategy, such as the EPCA Standards. An unplanned event is
inherently non-controllable. An oil embargo, a technological break-
through, or a recession are examples of unplanned events.

To predict the distributions of future vehicle populations
with respect to future planned and unplanned events, a stochastic
model was constructed. This model, which is called the Future
Automobile Populations Stochastic Model (FAPS Model), consists of
three major components: a procedure for specifying future planned
and unplanned events, a model of vehicle survival, and a model of

new car sales.

The procedure for specifying future planned and unplanned

viii




events outlined in this report describes a method for generating
the future values and the probabilities of the occurrence of these
values.of the model's exogenous variables. The procedure is based
on an interview process developed at the Stanford Research Insti-
tute. Such a procedure, which has not been applied in analyzing
future vehicle populations, is an appropriate procedure for incor-
porating the uncertainties associated with future planned and
unplanned events into the model.

The other components of the FAPS Model--the model of vehicle
survival and the model of new car sales--contain the equations
necessary to predict the distributions, by age and type, of future
vehicle populations for given values of the exogenous variables.
The model of vehicle survival predicts how long vehicles, by type,
survive on the road. The model of vehicle survival developed in
this study is a new model very much different from any existing
models of vehicle survival. The model of new car sales predicts
how many new cars, by type, will be placed annually on the road.
The model of new car sales used in this study is the model of
automobile demand developed by Wharton Econometric Forecasting
Associates, revised to incorporate the new vehicle survival
model.

Tests of the accuracy of the models of vehicle survival and
new car sales to forecast were performed in this study. However,
the procedure for specifying planned and unplanned events has not
been tested. A computer program of the FAPS Model has been
developed for future testing and application of the model.

ix/x







1. INTRODUCTION

1.1 BACKGROUND AND SIGNIFICANCE

Since energy conservation has become a national goal, much
concern has been focused on the fuel efficiency of automobiles.
Automobiles, which are a major consumer of gasoline, account for
nearly 35 percent of the petroleum consumed in this country. An
important tool in analyzing future vehicle energy consumption is a
model of the composition of future vehicle populations by age and
type. Such a model must have two major components: (1) a new car
sales forecaster that predicts the sales of cars by type; and (2) a
vehicle survival model that predicts the scrappage of cars by age
and type. Whereas adequate models of new car sales for forecasting
purposes have been developed, the same is not true for vehicle sur-
vival models. It was thus a goal of this study to build a model of
future vehicle populations which contains a comprehensive vehicle
survival model.

Another problem with existing models of future vehicle popu-
lations is that they fail to predict the uncertainties inherent in
their forecasts. In recent years, major unpredictable events have
1imited the utility of industry and government forecasts. For
example, vehicle fuel supply estimates based on traditional models

 of future vehicle populations have been confounded by the 011l
Cembargo, the abnormally cold weather in the Winter of 1977, and (on
the brighter side) the production of lighter and more fuel-efficient
automobiles. Events and developments of this kind occur at uncer-
tain times and their impacts are likewise uncertain. By explicitly
taking into account these uncertainties in forecasts, it may be pos-
sible for industry and government planners to better assess the
effects of policies and the risks associated with them. It was thus
another goal of this study to construct a stochastic model of future
vehicle populations which includes the uncertainties in its forecasts.




1.2 OBJECTIVES OF THE STUDY

~ The principal objectives of this study were to describe a
method of investigating the uncertainties inherent in future vehicle
populations and to build a new model of vehicle survival. To accom-
plish this, a stochastic model containing a new vehic]e'surviva1
model was constructed to provide distributions, by age and type, of
future vehicle populations. This model predicts these distributions
with respect to the impacts of two types of events: planned and

unplanned events.

A planned event is a controllable event or strategy. Examples
of such events are industry and government programs to promote new
designs for safer, cleaner, more fuel-efficient vehicles.

An unplanned event is inherently non-controllable, one for
which descriptions, occurrence times, and levels of impact are
unpredictable. For example, such events may include oil (or other
economic) embargoes, technological breakthroughs, and consumer
reactions. Because these developments contain random components, it
is desirable to have the distribution of their impacts incorporated

in the model.
The specific objectives of this study were to:

- perform a literature survey;

- describe a procedure for specifying future planned and
unplanned events;

- construct a forecasting model of vehicle survival;

- construct a model of future vehicle populations by age and
type, using the new vehicle survival model, a revised model
of new car sales, and the procedure for specifying future
planned and unplanned events; and

- develop a computer program for using the model to produce
forecasts of vehicle populations.
The stochastic model of future vehicle populations uses a
revised version of the automobile demand model developed by Wharton
Econometric Forecasting Associates (21) to forecast new car sales.




1.3 REPORT ORGANIZATION

The report has four major parts plus a series of appendices.
The first part, Sections 1. and 2., introduce the stochastic model
and discuss existing models of future vehicle populations. The
next four sections, 3. through 6., describe the FAPS model. The
third part of the report, Section 7., examines the predictive ability
of the model. The last section concludes the report with a summary
and recommendations.

Documentation for the computer program of the stochastic
model is contained in Appendix A. Appendix B contains a comprehen-
sive review of the literature, and Appendix C describes the Weibull
distribution on which the model of vehicle survival developed in
this report is based.




2. REVIEW OF EXISTING MODELS

~ Since automobile manufacturing has become a major industry in
the United States, many mathematical models of vehicle demand and
survival have been developed. Over the years, these models have
increased in sophistication. The earlier models attempted to
explain the relationships between automobile demand and economic
variables, particularly disposable income and new car purchase
price. These early models assumed constant survival rates for each
type of vehicle, and are usually simple one- or two-equation models.

The more recent models are, in general, very complicated.
The predominant approach relies upon the stock-adjustment process
within a dynamic econometric model. The fundamental assumption is
that gross expenditure on a commodity (measured in units sold) can
be calculated from the difference between desired stock and stock
already available as a result of prior purchases, plus the need to
replace old stock which has worn out. In this section, several of
the more important models of vehicle demand and survival are
briefly outlined. A more extensive discussion of these models is
presented in Appendix B.

The earliest stock-adjustment model of vehicle demand was
developed by Gregory Chow in the 1950s (4). This model assumes
that: (1) desired total stock of vehicles, in dollars, is a linear
function of disposable income and the average price of a vehicle;
(2) new car purchases can be calculated as the sum of the desired
change in stock and the depreciation of the old stock; and (3)
within a one-year period, consumers generally do not adjust their
stock of vehicles to the desired level but achieve only a fraction
of the change to the equilibrium level.

From these assumptions, per capita car purchases are
expressed as a linear function of disposable income, average car
price, and the stock of vehicles on the road in the previous year.




Realizing that the demand for automobiles may depend on more
than price and income, several authors in the years following
Chow's work have built stock-adjustment models which include addi-
tional variables. 1In 1961, Daniel Suits adjusted the average
retail price of cars by the number of months' duration of an aver-
age credit contract (23). Hamburger included interest rates (13),
and Saul Hymans (15) included male unemployment rate and a consumer
sentiment index.

In recent years, modelers have included many more variables
in their new car sales equations. Chase Econometrics included the
new variables: gasoline prices, unemployment rates, an index of
credit rationing, and dummy variables for auto strikes and cancella-
tion and reinstatement of investment tax credits (3). These
variables, plus annual vehicle miles travelled, are included in
recent models by EEA (8), Sweeney (10), Faucett (16), and Wharton
(21).

The development of vehicle survival models has been much less
extensive. Models reported in the literature assume that vehicles
face the same survival process regardless of type. Only a few of
the models assume that the survival process changes over time--
namely, the models by Walker (24), Faucett (16), and Wharton (21).
Walker fits the Togarithm of the vehicle survival rates expressed
as an odds to a function of vehicle age, rate of turnover in auto-
mobile ownership, and the level of used car prices to relative
costs of representative car repair services. Faucett assumes that
survival rates of the first eight years of a vehicle's Tife are
constant from year to year at the average levels, based on fifteen
years of vehicle survival data. For nine-year-old and older vehi-
cles, an adjustment to the average rates is calculated based on
current employment rates and average new car price. Wharton goes
one step further than Faucett with an adjustment to the survival
rates of all ages of vehicles, based on new car sales, scrap metal




prices, vehicle miles travelled, and other variables. These models

are limited in that they attempt to involve only the economic
determinants of vehicle survival and not the physical characteris-
tics of vehicles. A goal of this study was to build a more
comprehensive vehicle survival model.

As mentioned, in the recent models vehicle demand and survi-
val have been used for forecasting purposes. Equations are included
in the models so that vehicle demand, fleet composition, and fleet
gasoline consumption can be examined. To produce forecasts,
modelers formulate scenarios that are put into the models to gener-
ate expected values of the future variables. No existing models
generate probability distributions of the forecast variables, nor
do they estimate variances of these estimates (except in the simple
one-equation models). Another goal of this study was to build a
model which will generate probability distributions of the forecast

variables.




3. STRUCTURE OF THE FUTURE AUTOMOBILE POPULATION
STOCHASTIC MODEL (FAPS MODEL)

The FAPS Model developed in this study is made up of three
major components:

1) Model of New Car Sales
2) Model of Vehicle Survival

3) Procedure for Specifying Future Planned and Unplanned
Events

3.1 MODEL OF NEW CAR SALES

The first major component of the FAPS Model is a forecaster
of new car sales. As mentioned in the introduction, the model of
new car sales is a revised version of the Wharton Model of automo-
ble demand. The Wharton Model is a very large econometric model
designed to forecast the long-run size and composition of the U.S.
automobile demand and stock. It is one of the more recent models
of this type to have been constructed, and it has been recently
used by several government agencies to evaluate proposed automobile-
related policies.

The Wharton Model segments the vehicle population into five
size categories. In addition, it distinguishes between domestic-
and foreign-made cars. The five size categories are based on
wheelbase and price as follows:

1) Subcompact--up to 100 inch wheelbase
2) Compact--100 to 110 inch wheelbase
3) Mid-size--110 to 118 inch wheelbase
4) Full-size--over 118 inch wheelbase
5) Luxury--all "high" priced cars.

An overview of the Wharton Model is presented in the next section.

The Wharton Model contains a vehicle survival model which
assumes that the scrappage rates for a given age of vehicle are the




same regardless of the vehicle's size-class. Since a new and more
comprehensive vehicle survival model was developed in this study,
the Wharton Model was modified to remove all equations that are
used to predict vehicle scrappage. The new model of vehicle survi-
val was incorporated into the modified Wharton Model to generate
scrappage forecasts. Details on how this was done are bresented in
Section 5. 3.

3.2 MODEL OF VEHICLE SURVIVAL

The second major component of the FAPS Model is the new model
of vehicle survival. This new model is very much different from
existing vehicle survival models. It is based on the modified
Weibull model, which has three parameters with the following survi-
val distribution:

S(t) = pe'(a/b)tb+1-p
where:
S(t) is the probability a vehicle survives to age t
a,b are Weibull parameters
p is the probability that a vehicle fails.

The modified Weibull distributions accurately model the failure
process of automobiles. The modified Weibull Model also takes into
account the fact that a certain proportion of vehicles is never
scrapped. (These cars are probably preserved as "historical" vehi-
cles.) A full explanation of the vehicle survival model is

presented in Section 5.0.

3.3 PROCEDURE FOR SPECIFYING FUTURE PLANNED AND UNPLANMED EVENTS

The third major component of the FAPS Model is a procedure
for specifying future planned and unplanned events. The specifica-
tion procedure is a two-step process. The first step is to
represent future events, planned or unplanned, in terms of the




exogenous variables or parameters of the FAPS Model. The second
step is to describe the unpredictable nature of unplanned events.

There are uncertainties associated with the specifications in
both steps of the procedure. In the first step, there may be an
uncertain relationship between an event and exogenous parameters of
the model. For example, the new social security tax, which is a
planned event, will have a major but uncertain influence on real
disposable income as well as on many of the other exogenous parame-
ters in the model. In the second step, unplanned events may have
an uncertain impact, and the occurrence time of an unplanned event
is certainly uncertain. The specification procedure describes the
uncertainties in each of these events in terms of subjective
probabilities--that is, probabilities derived in an interview pro-
cess with an "expert" on the event in question.

The probabilities generated in the specification procedure
are used to determine the probability distribution of the forecast
values of the FAPS Model. This is achieved by assigning the
probabilities associated with the exogenous parameters for each
possible sequence of planned and unplanned events to the model
forecast values which are generated by those exogenous parameters.
In other words, forecasts by the model will be generated for each
alternative future--that is, each sequence of future planned and
unplanned events--and the probability that these forecasts will
occur will be equal to the probability of the occurrence of the
alternative future.

A full explanation of the specification procedure of future
planned and unplanned events is presented in Section 6.0.




4. AN OVERVIEW OF THE WHARTON MODEL

~ The model of new car sales used in this study is a modified
version of the model of automobile demand developed by Wharton
E.F.A. (21). The modification toc the Wharton Model entailed the
removal of all its equations of vehicle scrappage. Theée equations
were replaced by the vehicle survival model described in the next
section. This section presents the general structure of the
original Wharton Model. Emphasis is placed on how new car sales,
total and by size-class, are predicted.

The Wharton Model contains five basic sets of statistically
derived relationships:

Desired stock

Desired stock by size-class

New registrations
New registrations by size-class

Scrappage

There are many other equations in the model. However, they may be
regarded as subordinate to the five basic sets. The relationships
among these equations are illustrated in a flowchart of the
Wharton Model (Figure 1).

Desired shares (percentage of vehicle stock by size-class)
and desired stock are critical concepts in the model. The desired
stock or share may be interpreted to be a lTong-run "steady-state"
Tevel that would exist if all factors affecting automobile demand
were held constant. New car sales and scrappage are determined by
the "gap" between the desired stock and the actual, previous year-
end stock. Similarly, the shares by size-class of new car sales
are expressed as a function of the difference between the desired
shares and actual shares. The mechanism linking desired levels to
actual Tevels is called a stock-adjustment process.

10




New car price Demographic, Economic, and
and operating Transportation characteris-
cost variables tics variables
Cost per mile Size class Share
of the desired of Desired
stock by size Auto Stock
class
Average cost per .
mile of desired Dgi;gﬁd
stock
New Car s Unit
Sales L Scrappage

Size Class Shares
of Auto Sales

FIGURE 1. Flowchart of Wharton Model

The model operates as follows. From the appropriate exogenous
inputs a capitalized cost per mile for each size-class of vehicle is
computed. The capitalized cost per mile is essentially the present
value of all costs associated with the purchase, sale, and operation
of a car (a ten-year lifetime and a lifetime mileage of 100,000 is
assumed). This variable, along with the ratio of family income to
automobile costs, income distribution, and various demographic fac-
tors, is used to determine desired stock values for five size-
classes of vehicles: subcompact, compact, mid-size, full-size, and
luxury. Equation (1), the desired mid-size share of desired stock,
is an example of a desired share equation in the Wharton Model.

1




Wharton Model Equation for
Desired Mid-Size Share of Desired Stock (1)

Desired Mid-size Share

In [ e e = 211 - 1.98 1n (CPMM/T-M)
1-Desired Mid-size Share (139) (4.57)
- .161 In (YDI/FM/CT) + .786 1n (FM3+4/FM)
(1.3) (4.73)
RZ - 683 S.E. = .08 t-statistics in parentheses
where:

desired mid-share = desired mid-size share of desired stock

CPMM/T-M = cost per mile for mid-size cars over desired share
weighted cost per mile for all other classes.

YDI/FM/CT = disposable income over number of family units over
fixed weighted cost per mile (where weights are
the desired share values for the five size-classes
of cars for 1972).

FM3+4/FM = number of 3 and 4 member families over number of

family units.

Source: Page 3-38 Wharton Model report (21).

The most important factor in determining desired shares for
each class (except for luxury class) is relative cost-per-mile--
that is, the capitalized cost per mile of that class divided by the
share-weighted capitalized cost per mile for all other classes. As
this relative cost term increases, the desired share decreases. A
second important factor is the ratio of family income to average
capitalized cost per mile. As this term decreases, the desired
share of larger car decreases and the desired share of smaller cars

increases.

The desired shares are used to compute an average capitalized
cost per mile. This average, along with income per family, income

12




distribution, various demographic variables, and non-auto-related
transportation indicators, is used to determine the desired stock
per family. (See equation [2].) As expected, increased income
and number of licensed drivers per family have a strong positive
impact on desired stock. On the other hand, an increased percen-
tage of families earning over $15,000 has a strong negative impact
on desired stock--i.e., as families become wealthier, the rate at
which they increase their stock of cars decreases. The average
capitalized cost-per-mile term has a somewhat weak negative effect
on desired stock per family.

Wharton Model Equation for
Desired Stock Per Family Unit (2)

In (Desired Stock Per Family) = - 1.91 + .563 1n (RDIP4/FM)
(2.40) (3.13)

- .101 In (PER15+)/(100-PER15+) - .200 1n (CPMTTCAP/PC)
) (1.92) (.84)

+ .421 In (LD/FM) - .054 1n (MTWNA/FM) + .099 (NPMET/100)

(3.07) (1.48) (1.61)
R = .46 S.E. = .06 t-statistics in parentheses
where:
RDPP4 = real permanent income per family unit
PER15+ = percentage of families earning $15,000 or more in
1970 dollars
CPMTTCAP/PC = desired share weighted cost per mile over consumer
price index
» LD/FM = number of licensed drivers over number of family
units
MTWNA/FM = number of persons not using an automobile to drive
> to work over number of family units
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NPMET = percentage of population 1iving in SMSAs

Source: Page 3-37 of Wharton Model report (21).

Total desired stock is used to forecast new car sales and
scrappage. (See equation [3] and equation [4].) As expected, new
car sales respond positively to desired level of stock, and scrap-
page responds negatively. In addition, family income relative to
past trends and the percentage increase in new car price are impor-
tant positive and negative factors, respectively, in the new car
sales equation. Important factors in the scrappage equation are
miles driven per vehicle and average age of the stock, both of which

have a positive impact.

Wharton Model Equation for New Car Sales (3)
New Car Sales Desired Stock
n = -2.915  +3.79 In
Stock_; - Scrap (35.2)  (9.90) Stock_; - Scrap
#6.039 1n | ‘Y’;m -1.267 1n | 5ee€€) . 255 Dunmy
(8.39) (3.45) -1 (2.49)
RZ = 864 S.E. = .05
where:
New Car Sales = total yearly new car sales
Stock 1 = last year's end of year total number of vehicles
B on the road
Scrap = tot?1 yearly scrappage (equation [8] in Section
4.0
Yd/FM = real disposable income per family unit
Y/FM = permanent family income
Price = average new car price

14




Price_] last year's average new car price

Dummy strike dummy variable

Source: Page 3-44 of Wharton Model report (21).

Wharton Equation for Total Vehicle Scrappage (4)

ln( Scrap - Given Scrap ) - -6.98

Stock_] + New Car Sales (7:99)

-3.83 1n

Desired Stock )
(4.50) (

Stock_, + New Car Sales +§-g;)1n (Avg. Age of Stock)

-.15 1n

(5)30) Scrap Metal Price -.338 1n (Unemployment Rate)

(Price of 01d Used Car)
(4.33)

wi/k VMT /K (- YMT /(-
zg 53 In ( /K (- *g gg n\ fwr/k 2 *g gg In | WT/k 3

R - .923 S.E. = .046 D.W. = 2.60

Fit Period: 1954-1974
t-statistics in parenthesis.

where:
Scrap = total yearly scrappage
Given Scrap = number of vehicles that are over 21 years old on
the road
New Car Sales = total yearly new car sales (Equation [3])
Stock_; = last year's end of year total number of vehicles
on the road

Average Age
of Stock

average age of the vehicle stock 0 to 20 years of
age

VMT/k = vehicle miles travelled divided by total mid-year
stock.

Source: Page 3-44 of Wharton Model report (21).
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The new car sales and scrappage equations are closely

related. New car sales depend on scrappage and likewise, scrappage
depends on new car sales. Thus, if scrappage increases, new car
sales increase, and vice versa.

As mentioned previously, the new car sales in a size-class is
a function of the desired stock share. The size-class share of new
car sales responds directly to changes in the desired stock share
of that size-class, and the strength of that response depends on
the difference between the existing stock share (after scrappage)
and the desired stock share. The Wharton Model has an equation for
each of the five size-class shares of new car sales. (Equation [5],
the mid-size share of new car sales, is an example.)

Wharton Model Equation for (5)
Mid-Size Share of New Car Sales

n New Mid-size Share = 1n Desired Mid-size Share
1 - New Mid-size Share 1 - Desired Mid-size Share

Actual Mid-size Share
(.ggi i (5273415” T - Actual Mid-size Share )

n Desired Mid-size Share
1 - Desired Mid-size Share

R™ = .997 S.E. = .01 t-statistics in parentheses

where:

n

new mid-size share mid-size share of new car sales

desired mid-size share = desired mid-size share of desired stock
- (See Equation [1])

actual mid-size share = actual mid-size share of stock after
scrappage

Source: Page 3-46 of Wharton Model report (21).
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5. MODEL OF VEHICLE SURVIVAL

The first component of the FAPS Model--the Wharton model of
new car sales--was presented in the previous section. In this sec-
tion, the second component--the model of vehicle survival--is discussed.

It is important that a model of vehicle survival involve two
sets of hypotheses: (1) hypotheses about the relationship of the
technology used in, and engineering built into, vehicles and the
survival rates of vehicles; and (2) hypotheses about the relation-
ship of government policies, economic conditions, travel patterns,
etc. and decisions to scrap a vehicle. The first set of hypotheses
are technological; the second, behavioral. They are both important
in identifying how changes in the age distributions of vehicles
cause changes in the fuel economy, safety mix, and total emissions
of future fleets. For example, if future vehicles were constructed
so that the wear-out times of small fuel-efficient vehicles became
much different from those of large less-fuel-efficient vehicles,

. substantial changes in the fleet fuel efficiency of older-vintage
vehicles may result. This could have a substantial effect on total
future fuel consumption.

The relationships derived from the two sets of hypotheses
lead to a probability distribution of vehicle survival times for
each type and vintage vehicle. The use of probabilities makes it
possible to represent the natural differences between vehicles of

the same type and vintage. The procedure to generate the probabi-
Tity distributions is to choose an appropriate survival distribution
based on the technological hypotheses and then transform this
distribution into a time-dependent distribution based on the
behavioral hypotheses. In other words, a survival distribution
which describes the wear-out process of a vehicle is chosen. The
parameters of this distribution are then adjusted yearly in the

t forecast for changes in policy, economic conditions, travel pat-

terns, and other factors.




5.1 TECHNOLOGICAL HYPOTHESES

This section discusses several sets of technological hypothe-
ses. Examination of those hypotheses resulted in the modified
Weibull model of vehicle survival described below.

Technological hypotheses are examined by using data on vehi-
cle scrappage. A good way of investigating the relationships
between the survival of a vehicle and the technology employed in
its construction is to use data on yearly vehicle scrappage by vin-
tage and by model. A table of vehicle scrappage by vintage and
name plate is available.* Certain name plates correspond to speci-
fic types (i.e., size categories) of vehicles, for example,
Lincoln, Cadillac, and Imperial. Other name plates correspond to
general size categories of vehicles. For example, Mercuries and
0ldsmobiles are generally intermediate to large vehicles. Even for
name plates that correspond to a broad range of types of vehicles,
presumably a fairly consistent engineering process is used in the
manufacturing of these vehicles. Thus, an analysis of these name
plate data should reveal some characteristics of engineering-
related survival patterns of the corresponding vehicles.

Aggregate scrappage data over all vehicle types, which have
exclusively been used in previous studies, are not adequate to
examine the technological and engineering-related wear-out processes
of vehicles unless all makes of vehicles wear out consistently.

A motor vehicle can be thought of as a system of major
elements--that is, a body, transmission, chassis, motor, etc. Each
of these elements is exposed to wear and may fail with time--the
body rusts out; the bearings and gears wear out; the vehicle is in
a major accident and the entire front-end needs replacing, etc.
When a major failure occurs, a decision is made to either scrap or

*These tables are derived from the R. L. Polk and Co. tables
“United States Summary, Passenger Cars in Operation as of July 1,"
presented in Ward's Automotive Yearbook from 1956 to 1977.
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repair the vehicle. Decisions to scrap a vehicle are also made by
automobile dealers when they decide that the cost of replacing
worn-out parts of a trade-in vehicle is too high. Under these con-
ditions, the decision to scrap a vehicle is made because one or
more components of the vehicle has nearly failed. Although infor-
mation about 1ife characteristics of major components of vehicles
by type and vintage is not available, under certain assumptions a
life distribution (survival distribution) can be postulated. Four
simple assumptions are considered:

Assumption I: The vehicle is scrapped when its shortest-
lived major element fails.

Assumption II: The vehicle is scrapped when the longest-
lived major element fails. This condition may be called the "last
straw."

Assumption III: The vehicle is scrapped only when a catas-
trophic failure occurs--e.g., a major accident.

Assumption IV: The vehicle is scrapped after a series of
moderate to major failures through its life. These failures may
include accidents, engine component failures, brake failures, etc.
The lifetime of the vehicle can then be thought of as the sum of
interfailure times--that is, the times between failures.

Assumptions I and IV seem the most reasonable, and Assumption
II, the least. It also seems reasonable that Assumption III is
applicable to some proportion of the automobile population.

Assumption I Teads to a Weibull lifetime probability distribu-
tion (36,38). (See Appendix C for a discussion of the Weibull
distribution.) The Weibull distribution is the two-parameter
distribution:

a,b
_B-t
S(t) = Prob(L=t) = e (6)

where:
S(t) = probability a vehicle survives to age t
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The mean and variance of the Weibull distribution are:

O j—

The instantaneous scrappage rate, which is defined as the proportion
of vehicles scrapped in a time interval (t, t+dt) among those vehi-
cles surviving up to time t, associated with the Weibull distribu-

tion is:
h(t) = at™~
The scrappage rate of Lincolns* for the first 9 to 10 years (see

Figure 2) does seem to increase according to this type of function,
which implies that Assumption I may be reasonable.

Assumption III Teads to an exponential distribution for the
lifetime of a vehicle. The exponential distribution is a one-

parameter distribution:
S(t) = e Ct

where:
c = parameter.

*The fo]]Bwing analyses are based on scrappage data of
Lincolns because these data include only one type of vehicle, namely
a large luxury vehicle.
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The mean and variance of the exponential distribution are:

2

VAR(L) = (1)

E[L] = (‘7

We may combine Assumptions I and III, by assuming that a
proportion, p, of the population of vehicles of a certain type is
specified. This is the fraction of vehicles whose failure proéess
can be represented by a Weibull distribution. The remainder fail
according to the exponential distribution. This leads to a survi-

val distribution:

S(t) = pe °  + (1-p)e”Ct (8)

Maximum 1ikelihood estimates for the parameters of this sur-
vival distribution were calculated for 1958 to 1961 Lincoln data.
Goodness-of-fit tests indicate equation (8) is a reasonable
functional term (see Table 1). The parameters of the exponential
part of the distribution is extremely small. This indicates that
these cars are rarely used or almost always repaired at any cost.
The proportion of Lincolns which fall into this category is quite
large, 6 to 10 percent.

TABLE 1

MAXIMUM LIKELIHOOD ESTIMATES OF SURVIVAL DISTRIBUTIONS
OF THE WETBULL-EXPONENTIAL MODEL AND CHI-SQUARE TEST RESULTS

Lincoln Chi-Square Degrees of
Model/Car  a b c _p_ (100s of units) Freedom
1958 .0004 4.1 .00000T .94 10.9 6
1959 .0004 4.0 .000001 .93 3.1 6
1960 .0004 3.9 .000001 .91 1.5 6
1961 .0004 3.8 .000001T .91 9.1 6

22



The instantaneous scrappage rate associated with a failure
process represented by equation (8) is:

pe ° 4 (1-p)e”t

A comparison of this function (with parameter values from Table 1)
and observed scrappage rates for 1960 Lincolns is shown in Figure
3. The two curves are very close for the first 10 years, in which
time more than 50 percent of the 1960 Lincolns sold were scrapped,
and the curves are fairly close after nine years. The largest
error occurs at around 11 to 12 years, when only 20 percent of the
1960 Lincolns sold are remaining in the population. A similar com-
parison is presented for 1959 Lincolns in Figure 4.

Assumption I may also be modeled with a minimum-extreme-value
distribution. This distribution is a two-parameter distribution,
specified by the following equation:

where:
a,b are parameters, and:

(L = o - 25112
vaR[L] = 104093
b

The minimum extreme value distribution can also be combined with
the exponential distribution to form the minimum extreme value-
exponential distribution:
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b(t-a)

S(t) = pe® + (1-p)e”Ct

Maximum 1ikelihood estimates for the parameters of the distribution
were calculated for the 1960 Lincoln data (see Table 2). The
results for this distribution fit the data much less closely than
the Weibull-exponential model.

TABLE 2

MAXIMUM LIKELIHOOD ESTIMATES OF SURVIVAL DISTRIBUTIONS AND
COMPARISON OF CHI-SQUARE TEST RESULTS FOR 1960 LINCOLN DATA

Chi-Square
Distribution a b c p (100s of units)
Weibull-Exp. .0005 3.9 .000001 .91 1.5
Min. Ext. Val-Exp 10.2 .39 .000001 .92 13.3
Max. Ext. Val-Exp 8.1 .40 .000001 .92 10.0
Gamma-Exp .72 6.8 .000001 .94 15.0
Normal-Exp 9.08 2.7 .000001 .92 0.9

Degrees of freedom is 6 for all tests.

Assumption IT leads to a maximum-extreme-value lifetime
distribution (36,38). This distribution, which is similar in form
to the minimum-extreme-value distribution, is also a two-parameter
distribution:

-b(t-a)
S(t) = 1-e7®
where:
a,b are parameters, and

(L] = o+ <1722
(L) = 1:644%3
b

Maximum 1ikelihood estimators were calculated for the parameters of
the maximum-extreme-value-exponential distribution (see Table 2).
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As expected, this distribution did not fit the data as well as the
Weibull-exponential model.

Assumption IV states that the lifetime of a vehicle is made
up of the sum of interfailure times. If the failures occur randomly
over a vehicle's life, which seems highly unlikely, then the survi-
val distribution of this vehicle would be approximately Gﬁmma
distributed. The Gamma survival distribution is specified by:

~_\b-1 -
5(t) =fa(—ar‘-(%7—-e—a— dr
£

The estimated probability-weighted Gamma-exponential distribution
did not fit the data well (see Table 2). However, if the number of
failures in a vehicle lifetime is large, then it follows from the
central 1imit theorem that the sum of interfailure times tends

toward a normal distribution:
2

PN
S(t) = /‘5—_—.‘\/1'77 e b dt
t

Maximum 1ikelihood estimators for the parameters of the normal-
exponential distribution were calculated for the 1958 to 1961 Lin-
coln data (see Table 3). The normal-exponential distribution is:

® 2
1-a
S(t) = [per e Bt (1-p)e”ct (10)
t
The instantaneous scrappage rate associated with the normal-

exponential distribution is:

2
t-
-(._BE)

e + (1-p)ce”

(t) = — AT
d -(3:‘1)2
fg\-/lri- e b dr + (1-p)e'Ct
t

ct

h

(11)
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For each year, the normal-exponential model fit the data as well as
or better than the Weibull-exponential model. For comparative pur-
poses, the scrappage rates based on the normal-exponential model

are also presented in Figures 3 and 4.

A graphic comparison of all models discussed in this section
is presented in Figure 5.

TABLE 3

MAXIMUM LIKELIHOOD ESTIMATES OF SURVIVAL DISTRIBUTIONS OF
NORMAL-EXPONENTIAL MODEL AND CHI-SQUARE TEST RESULTS
(a = MEAN AND b = STANDARD DEVIATION OF NORMAL DISTRIBUTION)

Degrees
Lincoln Chi-Square of
Model/Year a b c p_ (100s of units) Freedom
1958 8.6 2.7 .000001 .94 4.5 6
1959 9.0 2.6 .000001 .93 1.8 6
1960 9.1 2.7 .000001 .92 0.9 6
1961 10.1 3.1 .00C0001 .91 9.2 6

It is not surprising that the normal-exponential model,
equation (10), and Weibull-exponential model, equation (8), perform
almost equally well. Assumption I, which is modeled by the Weibull
distribution, may be thought of as a subset of Assumption IV, which
is modeled by the normal distribution. The difference between the
assumptions is that in the first one a vehicle is scrapped because
of the first occurrence of any major vehicle component failure or a
major accident. The fourth assumption implies that the vehicle may
be scrapped at this first occurrence of a major failure or the
second occurrence of a major failure or at the occurrence of a non-
major component failure, as long as more than a few failures have
occurred in the vehicle's lifetime. In addition, Assumption I
includes cases when vehicles are scrapped due to a major failure or
accident during the first several years of a vehicle's lifetime--
that is, when only a few or no moderate failures have occurred--
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whereas Assumption IV, modeled by the normal distribution, does not
include such cases.

A reexamination of the scrappage rates drawn in Figures 3 and
4 illustrates the differences between the models based on the
Weibull-exponential distribution, equation (9), and the normal-
exponential distribution, equation (11). The scrappage rates for
the Weibull-exponential model match the observed rates for the first
nine years of vehicle 1ife more closely than the normal-exponential
model. This indicates that the Weibull distribution models early
scrappage better than the normal distribution. During these first
nine years of vehicle life, approximately 45 percent of the Lincolns
originally sold are scrapped. The normal-exponential model fits
the data well during the ninth through twelfth years when
approximately 35 percent of the Lincolns originally sold are
scrapped. Because the theoretical scrappage rates of the Weibull
exponential model match the observed rates for a greater number of
years of vehicle Tife, and because this model fits the data better
during the early years of vehicle 1ife when a vehicle is driven
most extensively, the survival model wiil be based on the Weibull
exponential distribution.

5.1.1 Modified Weibull Model

A modified version of the Weibull-exponential model is used
as the model of vehicle survival in this study. Since the rate
parameter, ¢, of the exponential portion of the distribution,
equation (8), is so close to zero (the ¢ value, .000001, implies
that about .0001 percent of surviving Lincolns which fail according
to Assumption III will be scrapped per year), a value of ¢ is equal
to zero is assumed. This modified distribution, which is called
the modified Weibull distribution in this study, has only three
parameters with the following survival distribution:
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b
S(t) = pe'(a/b)t +1-p (12)

where: a,b are Weibull parameters and 1-p is the probability that
a vehicle is "never" scrapped. Note the mean and variance are
undefined for equation (12). This distribution has the scrappage
rate:

b
atb-]e-(a/b)t

=P
") = s

The Lincoln survival parameters were reestimated for the modified
Weibull model. The results, which are presented in Table 4, are
almost identical to those for the Weibull-exponential model.

TABLE 4

MAXIMUM LIKELIHOOD ESTIMATES OF LINCOLN SURVIVAL
DISTRIBUTIONS OF THE MODIFIED WEIBULL MODEL

Lincoln Chi-Square Degrees of
Model/Car a b p_ (100s of units) Freedom

1958 .00041 4.08 .94 10.90 7

1959 .00042 4.00 .93 3.20 7

1960 .00049 3.90 .92 1.54 7

1961 .00043 3.76 .89 9.53 7

1962 .00045 3.75 .85 15.97 7

Maximum 1ikelihood estimates of parameters of the modified
Weibull model were also calculated for other nameplate data. The
parameter estimates are presented in Table 5, and theoretical scrap-
page rates and survival distributions for several nameplates are
illustrated in Figures 6 and 7.

The parameter estimates vary from nameplate to nameplate.
The graphs of scrappage rates and survival distribution illustrate
this variance. Cadillacs which have the lowest Weibull parameters
survive on the road for the most part longer than any of the other
nameplates. The expected lifetime of those Cadillacs which fail
according to a Weibull process, equation (7), is 10.64 years.

31




TABLE 5

MAXIMUM LIKELTHOOD ESTIMATES OF SURVIVAL DISTRIBUTIONS
OF THE MODIFIED WEIBULL MODEL

: Degrees of
Nameplate/Model a b _p_ Chi-Square Freedom
Cadillacs:
1956 .00029 3.93 .93 4.59 7
1958 .00029 3.92 .94 3.09 7
1960 .00031 3.82 .93 5.07 7
0ldsmobiles:
1956 .00030 4.06 .95 4.18 7
1957 .00029 4.13 .96 6.49 7
1958 .00028 4.20 .96 7.01 7
1959 .00029 4.10 .96 8.64 7
1960 .00029 4.05 .94 7.87 7
1961 .00029 4.10 .94 5.90 7
1962 .00027 4.15 .91 8.03 6
1963 .00031 4.10 .88 4.86 5
Plymouths:
1956 .00030 4.10 .95 5.25 7
1957 .00031 4.24 .97 13.472 5
1958 .00033 4.22 .97 14,452 6
1959 .00034 4.217 .95 9.64 6
1960 .00036 4.06 .95 4.63 6
1961 .00039 4.01 .94 5.46 6
1962 .00042 3.92 .88 2.04 5
Chevrolet:
1960 .00031 4.00 93 1.7 7
Miscellaneous:3
1956 .00034 3.64 .88 a.n 5
1957 .00042 3.80 .84 6.39 6
1958 .00048 3.82 .88 10.862 5
1959 .00055 3.82 .88 20.282 4
1960 .00053 3.83 .86 14.172 4
1961 .00057 3.74 .84 7.81 6
1962 .00063 3.70 .80 3.78 6
Mid-size Cars:"
1958 .00035 4.04 .95 5.94 7
1960 .00035 4.00 .93 2.09 6
1962 .00036 3.96 .87 3.74 6
Full-Size Cars:?>
1958 .00036 4.08 95 2.82 7
1960 .00034 4.00 94 2.54 7
1962 .00034  4.02 89 5.64 7

1 The cl;i-square is in terms of: 1000s of units for Cadillacs, Oldsmobiles,
Plymouths, Miscellaneous; 10,000s of units for Chevrolets, Mid-size Cars, and

Full-size Cars.

2Re.jection of hypothesis at five percent level of significance.
3 Miscellaneous cars are mostly imported vehicles.

Y The Mid-size Car category is the sum of Chevrolets, Fords, and Plymouths.

5 The Full-size Car category is the sum of Buicks, Chryslers, DeSotos,
Dodges, Mercuries, Oldsmobiles, and Pontiacs.
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The corresponding expected 1ifetimes for miscellaneous, mid-size,
and full-size cars are 9.2, 9.5, and 9.5 years. This low scrappage
rate may be because Cadillacs are constructed better, maintained
better, or driven less than other cars. The survival parameters of
the miscellaneous vehicles, which are mostly comprised of imports
such as Volkswagons and other small vehicles, have a high "a"
value, but a Tow "b" value. The high "a" value accounts for
slightly higher scrappage rates of miscellaneous vehicles in their
first few years of life. (At age two, a miscellaneous vehicle has
a scrappage rate = .0032; Plymouth's rate = .0028; and Cadillac's
rate = .0020.) These slightly higher scrappage rates can be
explained by the higher probability of a small car being totaled in
a collision over a large car. However, since small cars are, in
general, relatively inexpensive to repair, then if a major failure
occurs, these cars would probably be repaired a greater percentage
of the time than large cars. This may explain why the scrappage
rate of miscellaneous cars is generally lower than other cars after
their first several years of vehicle life.

5.1.2 Vehicle Survival Model Parameters

Whereas the parameter estimates in Table 5 do vary a fair
amount from nameplate to nameplate, the parameters, especially the
Weibull parameters, remain fairly constant from year to year. Thus,
the survival parameters for the vehicle survival model are assumed
to be constant through time, and they are set to the values listed
in Table 6. These parameter values were based on the values in
Table 5. The parameters for subcompact and compact were based on
the parameter estimates for miscellaneous Vehic]es, because the
registration data of miscellaneous vehicles is the only set availa-
ble composed predominantly of subcompacts and compacts. Note that
because of the lack of data, these parameters are assumed for both
domestic and foreign-made subcompacts and compacts even though the
miscellaneous vehicle category is predominantly foreign-made cars.
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TABLE 6
MODIFIED WEIBULL PARAMETERS

Size-Class a b P
Subcompact .00060 3.7 .85
Compact .00060 3.7 .85
Mid-Size .00036 4.0 .95
Full-Size .00034 4.0 .95
Luxury .00030 3.9 .94

The parameters for Tuxury vehicles are based on the estimates for
Cadillacs, which make up the largest share of luxury vehicles.

5.2 BEHAVIORAL HYPOTHESES

This section examines three behavioral hypotheses of vehicle
scrappage. The variables that seem to cause fluctuations in yearly
total scrappage are new and used car prices, unemployment rates,
scrap metal prices, vehicle miles travelled, and the average age of
the vehicle population. These variables presumably affect yearly
vehicle scrappage rates differently for different types of vehicles.
Thus, ideally, behavioral hypotheses should be constructed for each
type of vehicle. Those hypotheses could be constructed, but the
extensive analysis necessary for validating them 1ies beyond the
scope of this study. Instead, several simple behavioral hypotheses
were formulated. These hypotheses assume that the fluctuations in
yearly scrappage by type are similar to the fluctuations in total

yearly scrappage.

This first behavioral hypothesis tested in the model is the
one used in the original Wharton model (see Appendix B). This
hypothesis states that scrappage is a function of desired stock,
actual stock, new car sales, average age of stock, unemployment
rate, changes in vehicle travel, and the price of used cars and
scrap metal. The Wharton equation for scrappage is:
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Form 1 Equation (13)

Scrap - Given Scrap ‘ = -6.98

In Stock_] + New Car Sales; (7.99)
Desired Stock
-3.83 1In +2.91 1In (Avg. age of stock)
(3.50) (Stoc R + New Car Sa]es) (5.32)

-.338 1n (Unemployment rate)
4.33)

(2] 528) Scrap Metal Price

VMT/k VMT/k(-1 YMT/k (-2
+2.23 1n +4.20 In +2.45 1n
(2.42) (Wit ) (3.60) (Wit ) (3.45) (VM'T/k'H )

R® = .923 S.E. = .046 D.W. = 2.60

Price of 01d Used Car)
(

Fit Period: 1954-1974
t-statistics in parenthesis.

Where: Scrap = total yearly scrappage
Given Scrap = number of vehicles that are over 21 years old on

the road
New Car Sales = total yearly new car sales (equation 4)
Stock_] = last year's end of yea? total number of vehicles
on the road

Average age

of stock = average age of the vehicle stock 0 to 20 years of
age.
VMT/k = vehicle miles travelled d1v1ded by total mid-year
stock.

The parameters for equation (13) were estimated assuming
that the survival probabilities by age in a given year are the
same for all vehicles regardless of a vehicle's size or type. If
the vehicle survival model outlined in the previous sections,
equation (12) with the parameters specified in Table 6, is used
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to calculate the survival probabilities, the given scrappage and
average age of stock variables assume different values. Thus,
the Wharton scrappage equation using these modified variables
was reestimated with the following resuits:

Form 2 Equation : (14)

1 Scrap - Given Scrap Desired Stock

Stock_, + ﬂew Car Sales | ™ -}364?3) '(6'_3”%;;' Stock_; + New Car SaTes )

+8.906 1n (Avg. age of stock) -0.440 1n (Unemployment rate)
(5.33) (2.76)

VMT/k VMI/K (- VM /k(-2
Qe w7y )+ Gz‘gg)‘" (wrtzzy) * e (wzkist)

R - .883 S.E. = .10 D.W. = 1.42

The price of used cars/scrap metal price term became insignificant
in the reestimation, and therefore it was dropped from the equa-
tion.

A third form of the scrappage equation, which has a differ-
ent structure from the first two equations, is tested in the model.
This third equation attempts to incorporate the technological
hypotheses. Instead of describing scrappage as a ratio to actual
stock, this equation describes scrappage as being directly pro-
portional to expected scrappage. Expected scrappage is the total
number of vehicles that would be scrapped based on the technologi-
cal hypotheses. The expected scrappage is calculated by
multiplying the scrappage probabilities determined by the techno-
logical hypotheses of the vehicle survival model times the age
distribution of vehicles by size-class. The specific equation for
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expected scrappage is discussed in Section 5.3. (See
equation (16) in Section 5.3.) The third form of the scrappage
equation is:

Scrap - Given Scrap _ -Desired Stock |
ln( Expected Scrap - Given Scrap) (f;‘%) zggg; In Sioc?_] + New ggr Sales

+2.781 1n (Avg. age of stock) -.541 1n (Unemployment rate)

(2.48) (-5.14)
YMT/k VMT/K(-1 VMT/k (-2
-7 n( gy ) * 6351 In(miata) + 60931 =g
e (VMT/k ) ) on (VMT/k 2 ) 350) (VMT/k 3 )
R = .946 S.E. = .0517 D.W. = 1.68

It is not surprising that the coefficients of this equation are
very much the same as the second form equation. As in equation
(13), increases in desired stock and unemployment tend to produce
decreases in yearly scrappage. Also, increases in the average of
stock and vehicle miles travelled tend to produce increases in

scrappage.

Whereas the regression fifs for the second and third forms of
the equations are fairly good, these regression results should
improve with a better specification of the modified Weibull para-
meters. These parameters greatly influence the values of expected
and given scrappage and the average age of stock.

Each form of the behavioral equation for scrappage (13), (14),
and (15), is included in the computer program of the FAPS Model.
The computer program prompts the user for the form of the equation
to be used in a forecast simulation. (See Appendix A for details.)
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5.3 THE VEHICLE SURVIVAL MODEL

Previous sections described the equations and parameters that
make up the vehicle survival model. This section discusses details
on how these equations and parameters are used to predict the
scrappage of vehicles by age and size-class. It also presents
details on how the vehicle survival model is incorporated into the
Wharton Model. ‘

The vehicle survival model predicts, by age and size-class,
the number of cars scrapped in a year. This scrappage is calculated
in two steps. The first step is to calculate the expected scrappage
of cars by age and size-class. Expected scrappage is calculated
using the modified Weibull Model of vehicle survival, equation (11),
discussed in Section 5.1.1, as follows:

Expected Scrap (i,t) = PROB(i,t-1) + STOCK (i,t-1) (16)

where:

Expected Scrap (i,t) = expected scrappage of cars of age t-1 to
age t and size-class i during the year.

PROB(i,t-1) = probability that a car of size-class i is scrapped
during its tth year in operation.

STOCK(i,t-1) = the stock of cars age t-1 to age t and size-class
i in operation at the beginning of the year. (Note: STOCK(i,0)
are the new car sales of size-class 1i.)

t=1,2,...,2]

subcompact, compact, mid-size, full-size, Tuxury.

i

PROB (i,t-1) is determined by the modified Weibull model as follows:

Probability of scrappage at age t-1 to t given
survival to age t-1.

Pr[scrappage at age (t-1,t)|survive to age t-1]
Pr[survive to age t-1|survive to age t-1]

PROB(i,t-1)

- Pr[survive to age t|survive to age t-1]

1.0 - Pr[survive to age t]
) Pr[survive to age t-1]

1.0 - S(t)/s(t-1)
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where:

S(t) is the vehicle survival distribution defined in equation
(11) in Section 5.1.1.

A1l cars over 21 years old are assumed to be scrapped at the
end of their 20th year.

To determine actual scrappage, expected. scrappage %s adjusted
based on the results of one of the three behavioral equations of
scrappage, (13), (14), and(15), discussed in Section 5.2. The
adjustment procedure is a somewhat simplistic one that can be
improved in future work on the model.

The adjustment procedure operates as follows: The total
expected scrappage (EXP SCRAP) is calculated by summing the
expected scrappage for all ages and size-classes of cars. This sum
includes the given scrappage of cars which is the number of cars
over 21 years old (GIVEN SCRAP). A total yearly scrappage (SCRAP)
is determined by one of the behavioral equations (13), (14), (15),
in Section 5.2. The scrappage adjustment (ADJ) is then calculated
by:

ADJ = (SCRAP - GIVEN SCRAP)/(EXP SCRAP - GIVEN SCRAP)
and scrappage by age and type is calculated by:

SCRAP(i,t) = EXPECTED SCRAP(i,t) - ADJ

Note that the behavioral hypotheses are assumed to affect the scrap-
page of cars similarly, regardless of age and size-class. This is
clearly a simplification, but this adjustment process does approxi-
mate the behavioral adjustments to scrappage and guarantees that
the scrappage estimates are consistent with 6ther predicted vari-
ables in the model.

Once the scrappage by age and size-class is determined, the
age distributions of vehicles by size-class can also be calculated,
as follows:

STOCK(i,t) = STOCK(i,t-1) - SCRAP(i,t)
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The number of vehicles by size-class is cetermined by summing
STOCK(i,t) over age, t, for each size-class, i. The total number
of vehicles is then simply calculated by summing the number of
vehicles by size-class.

The estimates for total yearly scrappage, number of vehicles
by size-class, and total number of vehicles are put into the
revised Wharton Model to calculate total new car sales and the new
car share estimates for the five size-classes of vehicles.
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6. PROCEDURE FOR SPECIFYING FUTURE PLANNED AND UNPLANNED EVENTS

This section discusses the third component of the FAPS Model,
the procedure for specifying future planned and unplanned events.
The ability of any model to forecast accurately is highly dependent
upon how well the planned and unplanned events are specified. As
discussed in the introduction, planned events are the programs and
policies the user of the model wishes to evaluate, and unplanned
events are those non-controllable developments that may affect the
states of the model. A clear specification of these events
involves: (1) a representation that can be interpreted and used by
the model; and (2) a method of describing the unpredictable nature
of unplanned events. Procedures to handle these specification
problems are described in this section.

6.1 GENERAL DISCUSSION

The approach to the specification of planned and unplanned
events in this model is quite different from the general approach
to exercising of models of long-term vehicle demand and composition
for policy analysis. The commonly used approach is to develop an
expected future, given present policy. This expected future is

called the baseline scenario. A baseline scenario is usually

developed by using, for example, projections by the U.S. Bureau of
Census and econometric models.

A proposed policy, such as a proposed federal regu1ation,
can be evaluated by modifying the baseline scenario to reflect the
conditions of that policy. Forecast simulation results for the
policy-modified scenario are compared with the baseline results.
The relative merits of the proposed policy can be examined in this
way. For example, the simulated results, given an excise tax on
new car purchase price based on vehicle fuel economy, may indicate
a five percent reduction in automobile gasoline consumption in

43




1985 as compared with the baseline assumptions. Other proposed
policies can be compared in this manner, and this approach can
indicate the "best" policy.

A drawback of the baseline scenario approach is that it does
not indicate the range or probability distribution of forecast
values. Probability distributions of forecast values are important
because the cost measure or utility associated with each possible
value of a forecast variable may not be simply related to the fore-
cast variable. Thus, the expected cost of a policy given a
probability distribution of a forecast will not, in general, be
equal to the cost associated with the baseline forecast. Using the
above example, an excise tax may cause a significant drop in gaso-
line consumption only if the country has become deeply aware of and
committed to conservation. The excise tax may have no effect
otherwise--i.e., if drivers continue to consume ever-increasing
amounts of gasoline. The expected drop in gasoline consumption
(calculated by: the decrease in gasoline consumption given drivers
are conservation minded in 1985 times the probability that drivers
will be conservation minded in 1985 plus the increase in gasoline
consumption given that drivers are not conservation minded in 1985
times the probability that drivers will not be conservation minded
in 1985) may still be five percent in 1985. However, the policy
would be ineffective where the potential costs are the greatest--
i.e., when gasoline consumption is excessively high--and thus the
potential for a gasoline supply shortfall is the greatest. The
expected cost associated with this policy may then be much higher
than the cost associated with a five percent reduction in gasoline
consumption. If this were the case, the effectiveness of an
excise tax policy would have to be seriously questioned.

Another drawback of the baseline scenario approach is that
it usually does not take into account the occurrence of major
unplanned events. This is so because major unplanned events, such
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as embargoes, war, or severe recessions, are not 1ikely to happen
in any given year. The approach to the specification of planned
and unplanned events in this model is designed to generate
probability distributions and to include major unplanned events.
For these reasons, the approach is expected to be more useful than
the baseline scenario approach.

6.2 EVENT REPRESENTATION PROCEDURE

The first procedure in the specification of future planned
and unplanned events relies on the relationship between the events
and the exogenous parameters of the model. The procedure is to base
the values of the parameters on the occurrence of the planned and
unplanned events. As an example of how this may be done, consider
the recently enacted federal standard that all automobile manufac-
turers must attain an average of 27.5 miles per gallon for the
fleet of vehicles they manufacture in 1985. If average new car
price is a parameter of the model, then this standard may be
represented, in part, by an increase in the 1985 price of vehicles
due to more expensive materials that must be used in the vehicle
manufacturing to achieve the fuel economy goal. (Note that this
representation of the standard is only an example.) The method of
deriving the relationships between the parameters and planned and
unplanned events is to initially analyze their historical rela-
tionships. Where there are no historical precedents, a subjective
estimation of the relationship will be used.

In defining the relationship between the parameters and
planned and unplanned events, it may not be possible to assign a
set of fixed parameters corresponding to an event. An event,
especially one without historical precedent, may be better repre-
sented as a probability-weighted set of parameters. In the above
example, there is a probability that the automobile manufacturers
may not have to resort to more expensive materials to achieve the
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fuel economy goal. Therefore, there is a certain probability, Py

that the average real price of 1985 vehicles will not increase, a
probability, Pos that the average real price will increase by Xo5

a probability, P3s that the price will increase by X3s and so on.

Under this uncertainty, the representation of this event in terms
of average real vehicle price would be no increase in the 1985
price with probability, Ps and an increase equal to Xo in price

with probability, Py» an increase of X3 With probability, Ps> etc.

6.3 UNPREDICTABILITY OF UNPLANNED EVENTS

The second procedure to be discussed is the method of
describing the unpredictability of unplanned events. The future is
uncertain and may unfold in an infinite number of directions. A
procedure is therefore necessary to select a plausible and manage-
able set of alternative futures. The procedure commonly used in
existing vehicle-related models is to generate a series of possible
alternative futures called scenarios. A set of parameters based
on each scenario is generated and independently put into the model,
producing a series of results (i.e., expected values of the states
of the model) that a decision-maker must evaluate. A good
decision-maker will weigh each scenario by the probability of its
occurring, and then use this information to derive a crude
probability distribution of the expected values of the states of
the model.

The procedure can be improved in two ways. First, the
distribution of the states given a scenario should be weighted
instead of weighting the expected values. This can be done if the
variance of the forecast values is generated by the model. Second,
a more formal procedure, similar to those used in building decision
trees in decision analysis, can be used to generate scenarios--
that is, to build scenario trees. Scenario trees may be quite
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complicated to generate, but their use may pay off in a more realis-
tic de;cription of alternative futures.

6.3.1 Scenario Trees

The major feature of scenario trees is that they may branch
into two or more probability-weighted scenarios at any time during
the model's time horizon. At these time points, each branch would
correspond to an event specified by the scenario. As an example,
consider two scenarios of economic conditions in 1980. One
scenario states that a recession will occur (call this event 1),
and the other scenario states that the economy will experience
normal growth (call this event 2). If the probability that event
i occurs is p, then the scenario tree would have two branches in
1980. The first branch would consist of the set of parameter
values corresponding to event 1, and the results of the model with
this parameter input would occur with probability p. Likewise,
the results of the model generated on the second branch would
occur with probability 1-p.

The scenario tree only approximates an expert's assessment
of how the model's parameters may behave in the future. Indeed,
the decision-maker may view most parameters as stochastic
processes which may take a continuum of values over time. Even
if such a stochastic process could be expressed mathematically,
it could require more effort to incorporate into the model than
would be worthwhile. The scenario tree approach can be easily
implemented, and this is one of the primary reasons for using it.

A scenario tree may include planned and unplanned variables.
This is highly desireable. A planned event is represented on
the tree as occurring with probability 1, and an unplanned event
is represented as occurring at one or more time points under a
set of probability conditions. The implementation of a program,
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which is a planned event, may be conditional on non-controllable
events. An example is a program which requires the modification
of a manufacturing facility. The timing of this modification may
depend on interest rates, the strength of the market, etc. A
conditional event may be represented on the scenario tree as a
branch with a weight of probability 1 if this event branches from
a scenario where the conditions are met.

An example of a simple scenario tree containing planned and
unplanned events is presented in Figure 15.

In using the model described in this report, a scenario
tree should be constructed for each of a series of potential
alternative programs and policy decisions to be evaluated. The
construction of a set of plausible decision trees will probably
be the most difficult process in using the model.

6.3.2 Scenario Tree Formation

The scenario trees should be constructed through interviews
with "experts" in automobile design and economic forecasting.
An expert is defined here to mean anyone with special knowledge
about future automobiles and/or general economic forecasting.
The interview process must be well thought out so that accurate
probability assessments of future events can be determined. The
interview process is based on a method developed by Spetzler and
Von Helstein at the Stanford Research Institute (34), and it is
briefly outlined here. The interview is divided into six phases:

1) Motivating
2) Structuring
3) Conditioning
4) Pretesting
5) Encoding

6) Verifying
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The first phase, motivating, is to familiarize and explain
the importance of scenario trees in a forecasting effort. In
particular, an explanation with examples should be presented on
the advantages of the scenario tree approach over the baseline
forecasting approach.

The second phase, structuring, involves two steps. First,
the expert is probed in order to enumerate a 1ist of reasonable
planned and unplanned events into the future that may affect
automobile demand and scrappage. At this step, the events are
expressed in whatever terms are most familiar to the expert. The
second step is the establishment of an event representation pro-
cedure. In this step, the expert is asked to think about how the
1ist of events can be translated into the parameters of the
model. The expert is asked to consider which parameters may have
uncertain relationships with events and to consider the degree of
uncertainty. Since certain parameters have a great deal more
impact on the forecasts of the model than other parameters, the
expert is guided to give additional thought to the values of
these parameters.

Once the scenario approach is structured, the next two
phases are conducted to prepare the expert for the encoding phase.
The first of these phases is the conditioning phase. The condi-
tioning phase is aimed at exploring how the expert goes about
making probability assessments. In particular, the expert is
asked to specify the basis for his judgement and to indicate what
information is being taken into account in making his assessments.

The purpose of this phase is to discover and head off any -
biases that are associated with modes of judgment. These biases
include:

Availability bias. This bias occurs when an event which
is clearly in mind may cause the expert to assign a higher
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probability to it than is reasonable. This bias may occur when an
event is similar to a recent event or when the expert can easily
visualize the event.

Anchoring bias. This bias occurs when probability assess-
ments by the expert are formulated by adjustment to the.most
readily available piece of information about the event. This bias

often occurs when the initial response about an event serves as
a basis for later responses.

Representativeness bias. This bias occurs when an expert,
who is asked to give a probability assessment given some
evidence, will think of a probability that makes the evidence

more 1ikely. This bias is also known as sterotyping.

Conjunctive event bias. This bias occurs when an event is

the result of a series of events. The probability of the occur-
rence of such an event tends to be overestimated.

Disjunctive event bias. This bias occurs when an event is
dependent on one event's occurring out of a group of events. The
probability of the occurrence of this kind of event tends to be
underestimated.

Bias of unstated assumption. This bias occurs when the
expert's assessments are conditional on unstated assumptions.
The resulting probability distribution, in this case, may not
properly reflect the expert's total uncertainty.

The last step before the encoding phase is a pre-test. The
pre-test serves to familiarize the expert with the encoding pro-
cess. In this phase, the expert is asked to form a scenario
tree of events for some historical period, say the late 1950s.
The pre-test should give a good indication of any biases that may
arise. These biases can then be corrected for in the encoding
phase by structuring the problem further or by modifying the
encoding phase interview technique.
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In the last two phases, the actual encoding of the scenario

tree'is conducted, and the results are shown graphically as
distribution plots to the expert to verify that they conform to
the expert's beliefs.

The model computer program, which is discussed in.Appendix
A, is designed to accept scenario trees as input.
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7. HISTORICAL SIMULATIONS CONDUCTED WITH THE FUTURE AUTOMOBILE
POPULATION STOCHASTIC MODEL (FAPS MODEL)

Simulations over the historical period, 1960 to 1974, were
generated using each form of the behavioral equation, (13), (14),
(15), for yearly scrappage discussed in Section 5.2. The results
for seven important variables--new car sales, -scrappage, and new
car shares of the five size-classes--(Figures 8-14) are discussed
in this section.

A simulation over an historical period is very much like a
forecast simulation. In both, the model is initialized before the
first forecast period. The model then predicts the values of all
the dependent variables for the first forecast period, and it uses
these predicted results to predict the values of the dependent
variables for the second forecast period. In an historical simu-
lation the actual values of certain exogenous variables are known,
and these values serve as the scenario. The results of a simula-
tion generated over an historical period can be compared with
actual historical values, and examined to see how "close" they are
to actual values.

The results of the historical simulation for new car sales
(Figure 8) do match the actual values quite well. Increases and
decreases in actual sales are predicted in the simulation results.
Similarly, the scrappage results (Figure 9) also match the actual
values, although not as well as those for new car sales.

The results of the simulation for the new car shares do
point out some problems in the forecasting ability of this segment
of the model as it is presently constructed. (Note that the share
results were almost identical for each version of the model.) The
results for compact and luxury shares (Figures 11 and 14) are
fairly close to the actual values. The results for compact shares,
in particular, predict the increases and decreases in the actual
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shares fairly well. The results for the sub-compact shares (Figure
10) are poor. The results for mid-size and full-size shares
(Figures 12 and 13) are fairly close after the first several years
of the simulation period. However, neither share results predicts
the changes in the actual shares correctly for the last several
years of the simulation period.

The share predictions do depend on the §pecification of the
vehicle survival model. Each of the new car sales shares by size-
class equations have the following form:

In(new car share) = In(desired share of total stock)
+ ¢ + In(desired share of total stock
- actual share of total stock)
where:
c is an estimated coefficient.

If the actual share of total stock which is calculated using
the vehicle survival model is predicted poorly, the new car shares
will also be predicted poorly.

In conclusion, as the model is presently constructed, the
historical predictions for total new car sales and scrappage are
fairly close to their historical values. However, the predictions
for the new car shares are not as good and should be used carefully.
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8. SUMMARY AND RECOMMENDATIONS

The primary objective of the study was to assemble the com-
ponents of a stochastic model of future vehicle populations (FAPS
Mode1) and write a computer program of the model. The three
components of the model are:

1) Automobile Demand Model. This model of stochastic vehicle
populations uses several major parts of the model of
automobile demand developed by Wharton E.F.A. (21). These
parts include the equations for new car sales and the new
car shares by size-class.

2) Vehicle Survival Model. This new model of vehicle survi-
val, which is very much different from any existing
vehicle survival model, was constructed. This vehicle
survival model, which is based on the modified Weibull
distribution, explains the difference in the lifetime
distributions of car by size-class.

3) Procedure for Specifying Planned and Unplanned Events.
The procedure outlined in this report for generating the
future values of the model's exogenous variables--that
is, the specification of future planned and unplanned
events--is based on an interview process developed at
Stanford Research Institute (34). Such a procedure,
which has not been applied in analyzing future vehicle
populations, is an appropriate procedure for incorporating
the uncertainty of future values of exogenous variables
into the model.

The three components of the model have been coded into an inter-
active computer program which is outlined in Appendix A.

There are two recommendations for further work. First, the
procedure for specifying planned and unplanned events should be

62




fully tested. MWhereas the procedure has been described, its
application may be very complex and may require use of some simpli-
fying assumptions in work required to verify its usefulness.

Second, it is recommended that further work be done to
improve the vehicle survival model. One of the major weaknesses of
all models of vehicle populations evaluated in this study was in
estimating vehicle scrappage. While we believe that our vehicle
survival model is a significant improvement over any of the models
evaluated, there is still room for further refinement.
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APPENDIX A

Future Automobile Population Stochastic Model (FAPS Model)
Computer Program Documentation '

The computer program of the FAPS Model is designed to:

1) Accept scenario trees as input

2) Exercise the three versions of the model (corresponding
to forms 1, 2 and 3 of the scrappage equation discussed in Sec-
tion 5.0). |

3) Produce forecasts up to the year 2000.

The program does not print the forecast results. Instead, the
program generates an output file which can be easily analyzed by
the statistical analysis package, MIDAS, at The University of
Michigan. The MIDAS package then can be used to print the fore-
cast results or manipulate the data so that histograms of
forecast results may be generated.

The computer program is designed for conversational use.
The following series of prompts are issued upon execution:

1) ENTER FIRST, LAST YEAR OF FORECAST

The forecast period is entered as XXXX,YYYY. Presently, all
forecasts must begin with 1975.
Example: 1975,2000

2) ENTER VERSION NO

A"1," "2," or "3," which correspond to the form or the
scrappage equation to be used, is entered.

3) ENTER NON-STOCHASTIC EXOGENOUS VARIABLES
VAR, VALUES

Those exogenous variables which are non-stochastic (i.e.,
their annual values remain constant no matter what path
through the scenario tree is exercised) are entered with the
variable index first and variable values separated by commas.
If the number of values entered is less than the number of
forecast periods, the last entry value is assumed for the
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4)

remaining periods. A blank entry line terminates the prompts
for non-stochastic exogenous variables.
Example for a five year forecast: '
57,56.197,57.108,58.117,59.105,60.102 (U.S. families)

124,5.50 (maximum passbook savings)
ENTER TREE CARDS
NODE,YEAR,BRANCH,PROB

Each node of the scenario tree is entered on three cards.

The first card defines a scenario node. At a node, the values
of the stochastic exogenous variables are set. The NODE entry
is the number of the node; YEAR is the year in the forecast to
which the node corresponds; BRANCH is the node from which NODE
is connected; and PROB is the probability of the scenario
branching to NODE given BRANCH. The nodes must be numbered
according to the following rules:

1) A1l nodes have unique numbers

2) A node in year t must have a higher number than any node
in a previous year

3) Node numbers are set such that the lowest unassigned node
number is assigned to that node which is linked to the
Towest unassigned branch. An unassigned branch is a
linkage of two nodes where the node of the lesser year is
assigned and the node of the latter year is not. The
value of an unassigned branch is equal to the assigned
node number of the branch.

4) The node corresponding to year previous to the forecast
period is set to zero.

After the node definition card is entered, a variable list
of the stochastic exogenous variables is entered followed by
the values of these variables on a separate line. A set of
three cards for each node is entered until the entire .
scenario tree has been specified. A blank entry line signals
the program that all node information has been specified.
Example for a four year forecast:

In this example, personal income (Var1ab1e 58) and unemploy-
ment (Variable 393) are the only stochastic exogenous
variables considered. The scenario tree cards are:

1,1975,0,1.0
58,393
1249.7,8.50
2,1976,2,1.0
58,393
1376.1,7.70
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3,1977,2,.5
58,393
1520,7.2
4,1977,2,.5
58,393
1600,6.8
5,1978,3,.4
58,393
1650,6.0
6,1978,3,.6
58,393
1700,5.5
7,1978,4,1.0
1650,6.0

The scenario tree corresponding to this input is:

1974 1975 1976 1977 1978

5) ENTER ADJUSTMENTS
VAR, VALUES

Forecast adjustment values for a variable are entered with
the variable index first and adjustment values separated
by commas. Forecast adjustments are constants added to
variable forecasts to: (1) align forecasts with currently
available data, (2) adjust forecasts for data revisions,
and (3) adjust data for trends not accounted for in the
forecast variable's equation. If the number of values
entered is less than the number of forecast periods, the
last entry is assumed for the remaining periods. A blank
entry terminates input.
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Sample Run of Computer Program

ENTER FIRSTyLAST YEAR OF FORECAST
?1975+,1978

ENTER VERSION NO
71

ENTER NON-STOCHASTIC EXOGENOUS VARIAELES
VAR VALUES
?$continue with -base return « File -base contains the non-stochastic
P$endfile exogenous variables listed in Volume III
of Wharton Model Report (21).
ENTER TREE CARDS
NODE s YEAR y BRANCH» PROE . .
?$continue with ~t return < File -t contains the tree cards listed

?$endfile on previous page.

ENTER ADJUSTMENTS

VAR yUALUES . ) . )
?Pécontinue with -adjust return <« File -adjust COY‘t@‘"S the adjustment
Phendfile constants 1isted in Volume I of
#r statimidas Wharton Model Report (21).

MIDAS

STATISTICAL RESEARCH LAERORATORY
UNIVERSITY OF MICHIGAN

14106159

MAR 10y 1978

COMMAND
freed fi=-out e=1-12 v=1-695 1=X% fo=single < Output of model
program is in file -out

READ ORSERVATIONS 1-12
VARIABLES BY CASE

12 CASES READ FOR 695 VARIABLES

67




COMMAND
Pwr Kk v=200y202,2035279,299

WRITE OBSERVATIONS
VARIABLES BY CASE

200. 202, 203, 279, 299,
SOLUTION YEAR FROBARIL SALES SCRAFFAG
1.,0000 1975.0 + 30000 8.7406 7.0088
1,0000 1976.0 + 30000 11,429 8.42364
1.0000 1977.0 + 30000 12,651 10.093
1.0000 1978.0 + 30000 11,099 8.8625
2.0000 1975.0 + 20000 8.7406 7.0088
2,0000 197640 + 20000 11,429 8,4236
2,0000 1977.0 120000 12,651 10,093
2,0000 1978.0 + 20000 13.258 ?.4641
3.0000 197%.0 + 30000 847406 7.0088
3.0000 1976.0 + 50000 11,429 8,4236
3.0000 1977.0 + 50000 17.008 11,147
3+0000 1978.0 + 50000 8B.9975 %.0710

12 CASES WRITTEN FOR % VARIABLES

Three solutions corresponding to the three paths through the
scenario tree have been generated.

Solution 1 has a probability of .3 of occurring; Solution 2, .2;
and Solution 3, .5. The total new car sales and total scrappage
variables are in million of units.
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COMidAND
Twr ¥ v=200,202,203,53,398

WRITE ODRSERVATIONS
VARIABLES RY CASE

200. 202, 203, 93, 398.
SOLUTION YEAR FROEBARIL INCOME UNEMFLOY
1,0000 1975.0 + 30000 1249.7 8.5000
1.0000 1976.0 + 30000 13761 7+7000
1.0000 1977.0 + 30000 1520.0 7.2000
1.0000 1978.0 +30000 1650.0 64,0000
2.0000 1975.0 + 20000 1249.7 8.5000
2.0000 1976.0 + 20000 1376.1 747000
2,0000 1977.0 + 20000 1520.0 742000
2,0000 1978.0 + 20000 1700.0 9.5000
3.0000 1975.0 + 30000 1249.,7 8.5000
3.0000 1976.0 +30000 1376.1 747000
3.0000 1977.0 + 950000 1600.,0 6.8000
3+.0000 1978.0 + 350000 1650.0 6.0000

12 CASES WRITTEN FOR 5 VARIAERLES

This output displays the stochastic exogenous variables
specified by the tree cards.
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APPENDIX B
Literature Survey

B.1 Summary

Since automobile manufacturing has become a major industry
in the United States, many mathematical models of vehicle demand
and survival have been developed. The earlier models .reported
in the literature are vehicle survival models, with the first
vehicle demand models appearing in the literature about ten
years later. Over the years these types of models have increased
in sophistication and many additional types of models have been
developed. Included in the list of model types are:

Short-run sales
Marketing
Pricing

Market Shares
Fleet

In recent years, with the growing concern over effects
of the domestic fleet on the environment and future fuel supplies,
new types of models have been developed, including:

Accident

Air Pollution

Air Quality
Energy Consumption
Fuel Consumption
Fuel Economy
Safety

These recent models, in general, are designed to be used as
input for fleet distribution of vehicles by type and age, generated
by vehicle demand and survival models.
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In the survey, the principal types of models reviewed are
long-run vehicle demand models and vehicle survival models.
These two types of models will be the major components of the
stochastic model of future vehicle populations to be constructed
in this study. The demand and survival models are discussed
in section B.2 and B.3, respectively. In addition, thase models
which can utilize the output of the vehicle ‘demand and survival
models are briefly discussed in B.4. These models are called
application models.

The last section of the review contains a bibliography.
This bibliography is divided into four parts:

Vehicle demand and survival models

Application models

Scenario trees and probability assessment procedures
Stochastic modeling theory

This bibliography contains the reference material which is
being used to build the stochastic model of future vehicle
populations.
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B.2 Demand Models

The predominant approach used in modeling automobile demand is the
stock-adjustment modei. Both of the two major models’being exercised
by the Federal Government today--the Faucett Model and the Wharton
Model--are stock-adjustment models. Stock-adjustment models are forms
of dynamic econometric models. Their theoretical basis.is that gross
expenditure on a commodity, measured in units sold, is calculated from
the difference between desired stock and stock already available as a
result of prior purchases, and the need to replace the old stock which
has worn out. ‘ ‘

The stock-adjustment approach to modeling automobile demand was
first applied separately by Chow and Nerlove in the mid-1950s. Since
their applications, this approach has been employed in an increasingly
sophisticated manner by researchers. In this survey, the development
of this modeling approach is discussed by focusing on a few of the
stock-adjustment automobile demand models. Also, because of their
importance in defining the automobile demand prob]em, two studies ear-
1ier than Chow's are discussed.

Early Models

Two important models of automobile demand were constructed in the
1930s. In each, an interesting formulation of a demand function is
derived. Demand is split into two components: new ownership demand
and replacement demand. In the earlier work by deWolff, replacement
demand was estimated from yearly age distributions of vehicles on the
road, based on registration data.(7) Disposable income was found to
correlate well with the estimated replacement demand. New ownership
demand was approximated by subtracting the replacement demand from
total new car sales. deWolff found that new ownership demand could be
modeled as a function of the price index of new cars and a purchasing
power indicator as represented by corporate profits.

The second study, by Roos and von Szeliski, was published in
1939.(20) This study is similar to deWolff's, in that automobile demand
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was separated into new owner demand and replacement demand. However,
a more sophisticated theory of demand was developed. The theory was
based on five assumptions:

1) The demand for automobiles is a derived demand since the
primary demand is for a transportation service.

2) Consumers are continuously adjusting the number of cars in
operation toward some particular level called "the maximum
ownership level."

3) The maximum ownership level is continuously changing accord-
ing to the economic status of consumers and such variables
as car durability and price.

4) Consumers are continuously adjusting the quality of the car
population toward an optimum level of replacement.

5) The rate at which the car population is adjusted depends
on general and economic conditions.

It is interesting to note that these assumptions are very similar to
those underlying stock-adjustment models.

Based on these assumptions, Roos and vonSzeliski hypothesized
that new owner sales are a function of the price of cars, an income
factor, the capacity of sales outlets, the trade-in price ratio, and
the difference between the maximum ownership level and existing stock
of cars. The maximum ownership level is hypothesized to depend on an
income factor, the price of cars, and the durability of cars as meas-
ured by average vehicle 1ife. Replacement sales are assumed to depend
on the rate of used car scrappage, the price of cars, the trade-in
ratio, and per capita income. The three hypothesized relationships
were incorporated into a single relationship for new car sales. Est-
imates of income and price elasticities using different data sets were
calculated. Both the income and price elasticities were found to be
quite high (income: 1.38 to 3.51; price: -1.0 to -2.0).




Stock-Adjustment Models

The earliest stock-adjustment model of vehicle demand was de-
veloped by Gregory Chow in the 1950's (4). In his model, Chow first
develops a model of the desired (equilibrium) total stock of vehicles,
in dollars. In this model the desired stock is assumed to be a linear
function of economic and demographic conditions. Using his expression
for desired stock, Chow reasons that new car purchases can be calcu-
lated as the sum of the desired change in stock (a stock-adjustment
term) and the depreciation of the old stock. However, Chow argues
that within a one year period, consumers in general do not adjust their
stock of vehicles to the desired or equilibrium level. An assumption
is made that consumers will achieve only a fraction of the change to
the equilibrium level.

The lag in adjustment to the equilibrium is explained more fully
in an article by Marc Nerlove that appeared about the
same time as Chow's work.(lg) Nerlove states that the lag in adjust-
ment may result for a variety of reasons. One reason given is that
a consumer may be unwilling to change his stock because of anti-
cipation of changes in the current levels of economic variables.
Another is that a consumer's budget may be committed to other items
such as installment payments or life insurance premiums.

Based on the assumptions outlined, Chow developed his model of
new car purchases as follows:

Xt =a+ bpt + cIt
where: Xt = desired stock in year t
p = average price of a vehicle
It = disposable income
a,b,c = constants
then: Xnew = KX = Xy q) + (0 - d)Xy ) + v

ka + kbpy + keI, + (1 - d - k)X_q + V
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where: X

new per capita new car purchases, in units

k = stock-adjustment factor
d = depreciation rate
v = stochastic error

The regression results are:

Xnew = ,0779 - .0201pt - ’23]0Xt-1 + .01171d
(.0026) (.0472) (.0011)
R2 = ,858 Standard errors in parentheses

The stock-adjustment factor, k, is estimated to be around .59 and
the depreciation rate, .74.

Nerlove developed his model in a manner similar to Chow's model.
Using Chow's notation, Nerlove assumes that the long-run equilibrium
stock can be expressed by:

Xt =a+ bpt + cIt
then: Xnew, = K[Xy = (1-d)X, {1+ (1-K)X .,
t t-1
or: Xnew. = kad - kbp, - kb (l-d)pt_1 + kel

- ke (l-d)It_1 + (l-b)Xnewt + v

In estimating parameters for this equation based on 1921-53 data, Nerlove
found the depreciation rate equal to approximately .45 and the stock-
adjustment factor equal to about .73. His estimate for the price
elasticity is about -.9 and the estimate for the income elasticity is
2.8.

Realizing that the demand for automobiles may depend on more
than price and income, several authors built models which include
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additional variables in the years following the publication of Chow
and Nerlove's models. In 1961, Daniel Suits included a credit term
by adjusting the average retail price of cars by the number of months'
duration of an average credit contract.(23) Hamburger, in his model,
included interest rates and found an interest rate elasticity of -.85.
(13) In another model by Saul Hymans, male unemployment rate and a
consumer sentiment index were included.(15) .

These models improved the state of the art of vehicle demand
modeling, and they provided the groundwork on which the recent, large
models have been constructed.

Recent Models

In recent years, many models of new car demand have been developed
for forecasting and policy analysis purposes. Of these models, two
are being exercised fairly extensively as aids to federal policymaking.
These two models are the Faucett Model and the Wharton Model. These
two models will be extensively discussed in this section. In addition,
brief descriptions of other important recent models are presented.

In 1974, Chase Econometric Associates built a model to assess
the probable energy and economic inpacts of six vehicle tax and
regulatory assumptions for the Council on Environmental Quality.(3)
The primary purpose of the study was to predict gasoline consumption
by passenger vehicles for 1974 to 1986. Basic to the model are equa-
tions for annual new car sales and market shares by five size ciasses--
subcompacts, compacts, intermediates, standards, and luxury cars.
Included in the sales equation is a term for the relative price of
gas and oil, which in previous studies had not been significant. The
elasticity for this price is -.82 of mean values. The other important
factors included in the model are disposable income, relative new
car price, unemployment rate, stock of cars, and a credit index.

Also in 1974, Rand Corporation built a new car sales model as
part of an annual multi-equation forecasting model.(zs) Their equation
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for new car sales is a linear function of used car price, the ratio of
this year's permanent income per household to last year's permanent
income per household, new car prices, and a dummy strike variable. A
direct relationship between new car sales and gasoline prices could
not be found. However, the equation for used car prices does depend

on gasoline prices, so that the model of new car sales does respond

to gasoline prices through changes in used car prices. Also, affecting
new car sales through used car price is last year's stock of cars per
household. Thus, this model does include a stock-adjustment term.

A different approach was taken in the new car sales model
developed in 1975 by Energy and Environmental Analysis, Inc. (EEA).(8)
EEA found that new car sales increase with positive changes in
vehicle miles travelled from one year to the next and decrease when
the ratio of new car price to used car price increases. An equation
for total vehicle miles per household was estimated to input into
the sales equation. This equation indicates that vehicle miles
travelled increase as the unemployment rate increases, increase as
real disposable income increases, and decrease as the gasoline cost
per vehicle mile traveled increases.

James Sweeney also found that vehicle miles travelled is a sig-

(10)

nificant factor affecting new car sales. Sweeney includes this

variable, the unemployment rate, and disposable income into & standard
stock-adjustment model of new car sales.

Faucett Model

The Faucett Model was written in 1976 under the sponsorship of
the Federal Energy Administration.(ls) Its objective is to model the
effects of alternative fuel economy policies on future gasoline con-
sumption, vehicle miles travelled, new car sales, fleet size, and fleet
composition, through the year 2000.

The automobile demand estimator used in the model is a short-run
stock-adjustment model which is a variation of the classic stock-
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adjustment model used by previous researcners. Adjustment in this
model occurs due to a gap between a "target" stock of automobiles,

Otf, and the "existing" stock of automobiles as of the end of the curr-
ent period. In the previous stock-adjustment models, the gap is
usually defined as the difference between the target stock and the
existing stock at the end of the previous period.

The target stock is hypothesized to be related to household
income. To derive the target stock, first, automobile ownership per
household is related to household income based on the 1970 Consumer
Buying Indicators by the following formula:

Auto ownership per household = 0.01786(1‘ncome)'4743

This particular form of the relationship was chosen because it reflects
the tapering off of additional automobile ownership with income. The
target ownership is then computed by multiplying automobile ownership
per household estimated for each of six income groups times the number
of households in each group, and then summing over all groups.

Once the target automobile ownership is calculated, the gap
between target and actual ownership is computed as the difference
between target ownership and the stock of cars on hand at the beginning
of the year less the number of cars scrapped over the year. The gap
term is combined with a generalized price term to estimate the following
formula for new car sales:

N, = 286721.3[0,* - (Autos, - 0,)]-%'78(x,)™-170%9
where: Nt = Total annual new car sales in year t
Ot* = Target ownership of automobiles in year t
Autost = The stock of automobiles at the beginning of
year t
Dt = Scrappage of vehicles over course of year t
Xt = Index of generalized price with 1967=1

The generalized price term includes new car price and a discounted,
perceived lifetime price of gasoline for a new car.
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Wharton Model

The Wharton Automobile Demand Model is a very large econometric
model designed to forecast the long-run size and composition of the
U.S. automobile demand and stock to the year 2000.(21)  The model
contains about eighty statistically estimated re]ationships5p1us
some three hundred associated identities. Included in the model
forcast outputs are total stock, vehicle miles travelled, the com-
position of stock by five size classes, yearly demand for new cars by
size class, yearly scrappage of cars by vintage and size class, new
car prices by size class, and used car pfices by size class and vintage.

The Wharton automobile demand estimator is based on a stock-
adjustment process similar to the one used in the Faucett Model. New
registrations are determined by the gap between a desired, equilibrium
stock and the actual stock. The Wharton Model, however, differs from
previous models in two major aspects. First, the theoretical concepts
used in deriving the desired stock are new and innovative. Second,
the yearly scrappage of vehicles is simultaneously determined with
new car sales, and thus scrappage is affected by the stock-adjustment
process.

The desired stock of automobiles is estimated from state cross-
sectional data at one point in time as opposed to time-series data
as in earlier studies. Wharton argues that in order to analyze the
characteristics of the consumer's decision-making the choice and
technology available in vehicles must be held constant. In addition,
demographic variations (across states) in desired demand may be
analyzed.

Wharton decided to use 1972 cross-sectional data for their
estimation of desired stock. They argue that in 1972, desired stock
by state was approximately equal to the actual stock. In this year,
the economy was fairly stable, with moderate unemployment and inflation;
pollution controls had yet to make an impact; and smaller domestic
cars had been present in the market for several years.
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The desired stock equation is estimated in terms of desired

units per family, as follows:

ln(Xt*/FM) = -1.910 +.563 In(Y/FM) - 0. 100)1n(Y15/100—Y15)
92

R = .46

where: Xt*/FM
Y/FM
Y15

CPM
CPI
LD/FM

MTWNA/FM

NPMET

(2.40) (3 13) (1

- 1995 Tn{CPM/CPI) + .4212 In(LD/FM) .
(.84) (3.07)

.0537 1n(MTWNA/FM) + .099 Tn(NPMET/100)
(1 48) (1.61)

t-statistics in parentheses

Desired stock per family unit
Permanent real disposable income per family

Percentage of families earning $15,000 or more
in 1970 dollars

Desired share weighted cost per mile
Consumer Price Index (1972 = 1.0)

Number of licensed driver divided by number of
family units

Number of persons not using an automobile to
travel to work divided by the number of family
units

Percentage of population living in SMSA's

As may be expected, the income and number of licensed driver terms

have the strongest positive effect on desired stock, with elasticities
of .56 and .42, respectively. The negative sign of the term, percentage
of families which earn more than $15,000, expressed as an "odds,"

reflects income saturation--i.e., above a certain income level, families
increase their stock of cars at a lTower rate with increases in income

than below this level.

The desired share weighted cost per mile term is a measure of
combined purchase and operating costs and appropriately has a negative
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sign. It is computed by first calcuiating a cost per mile for each

size class of vehicle. This cost includes the purchase price and
discounted finance and operating costs. The fleet cost per mile is

then computed as a weighted average of these size class costs by the
desired shares of each class. Formulas for the desired shares are
estimated based on 1971 and 1972 state cross sectional data. With
this formulation, the desired stock equation responds to changes in

“the composition of desired stock. However, it should be noted that

the t-statistic indicates that the coefficient of the cost-per-mile term
is not significantly different from zero. Even though the term is
statistically weak, its magnitude and sign seem to justify its inclusion
in the model.

With an estimate of desired stock, the new car registration and
scrappage equations can be estimated. These equations are expressed
as rates as follows:

y*
Xnew t
Tn 208 ) = 379 In|lp—t—ec | - .255D
(Xt-l - St) (Xt-l - St)

(9.90) (2.49)

t-1
(8.30) (3.45) (35.2)

Yd/FM Pt
+ 6.039 1In W - 1.267 1In P - 2.915

72

R™ = .864

and total auto scrappage:

s, - s20° X*
In X___"'—XFIEW = -6.98 - 3.828 1In m‘e—w + 2.911A

t t
(7.99) (4.50) (5.32)
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- .15 1n( PU ) S338 10 U+ .2 af 1n(__.___V”T )
P 1=0 WT(-1) )
(2.20) (4.33)
ao = 2.23 o) = 4.20 ap = 3.45
(2.42) (3.60) (2.86)

R = .923

where: Xnew = New car registration
Xt = Year-end stocks in opertion in year t
St = Total auto scrappage
Xg = Desired stock in year t
Yd/FM = Real disposable income per family
Y/FM = Permanent family income
Pt = Average new car price in year t
D = Dummy strike variable
520t = Vehicles over 20 years of age
A = Average age of stock
PU = Average price of used cars
PS = Scrap metal price
U = Unemployment
VMT = Vehicle miles travelled this year
VMT(-1) = Vehicle miles travelled last year

In both equations the rate of new car sales and scrappage are functions
of the gap between desired and actual stock, and both new sales and
scrappage respond strongly (positively and negatively, respectively)

to changes in desired stock.

New car registrations also, as expected, fall with sharp increases

in new car prices.

Similar to the cost-per-mile variable in the desired
stock equation, the price variables are calculated based on an averaging
of prices by the shares of actual new stock. In an interesting for-
mulation, the actual new shares equations are modeled as a stock-
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adjustment process toward the desired shares. Thus, the new car
registrations will respond to changes in the composition of new car
registrations through the price variables.

The Wharton Model is a very complex model. However, it is well-
thought out and includes many logical, dynamic interactions.
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B. 3 Vehicle Survival/Scrappage Models

The study of survival of automobiles dates back to the 1920's
to an article by Clare Griffin (12). 1In this article Griffin demon-
strates how the "standard" methods of constructing life tables of
persons can be applied to constructing life tables of automobiles.
His procedure is simply to normalize the registration data by model
year to that model's production figures. - Thus, if x cars were pro-
duced in 1920 and y of these cars remain in 1923, then the fraction
y + x remain in 1923. For each series of model year data, Griffin
fitted the following equation:

long t = TogK + telogS + ctlogG
where: Lm . fraction of survivors of model year m in year m + t.
k, S, ¢, G are constants.

The three components on the right-hand side of the equation
represent, according to Griffin, the three causes of automobile
retirement: (1) accidents, which occur at a fairly constant rate
from year to year, (2) deterioration, which is age-specific, and,
(3) obsolescense, which is also age-specific.

Griffin's model of automobile survival was partially incor-
porated into Roos and von Szeliski's replacement automobile demand
model (20). In particular, they used Griffin's model to calculate
"theoretical" scrappage rates for vehicles of vintage 1919 to 1926.
For vehicles of vintage after 1926, they adjusted Griffin's rates
by the actual scrappage data to derive the theoretical scrappage.
From this information, they generated a time series (1919 to 1938)
of yearly theoretical aggregate scrappage which was included in
their equation for replacement rates.

The majority of the vehicle survival/scrappage models since
Griffin have not been very sophisticated. Usually, average
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survival rates are calculated based on several years of registration
data. This method assumes fixed survival rates, and Tikewise, fixed
scrappage rates. Some other models assume a constant survival rate.
These models, therefore, assume that vehicle survival is an exponen-
tial or geometric function of age. In the last ten years, a few
innovative models of vehicle survival have been constructed. Some
of these models will be discussed in the remainder of this review.

In 1968, Franklin Walker published a vehicle scrappage model
based on the logistic function (24). He found that the relationship
between the average scrappage rates, based on new and used car reg-
istrations compiled by R. L. Polk Company, and the age of vehicle
can be represented by the logistic function:

_ -kt
Mt = 1/(L+Be ") + Et

where: Mt is the mean scrappage rate of vehicles of age t.

L, B are parameters.
Et is a random error term.

Walker used this scrappage equation to investigate the fluctuations
in annual aggregate vehicle scrappage from the expected annual scrap-
page. He constructed a model that relates these fluctuations to

(1) the rate of turnover in automobile ownerships, for which the
ratio of new-car to total registrations is used as a surrogate, and
(2) the level of used car prices to relative costs of representative
car repair services. His results show that almost two-thirds of the
variations of the actual scrappage from its trend is explained by
these two factors.

In 1974, Chase Econometrics published a vehicle survival model
that is quite different from previous models (3). This model assumes
that the survival rates of a model year of vehicles, as calculated
by dividing current year registrations for a model year by the
original registrations of that model year's production run, is
related to the age of the model year car by the following function:
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R 3
gz,t - aebT
my
where: R = current registrations for the model year (my) in
my,t
year t.
R = original istrations.
my g registrations
T = t-my = age of the model year car.
a,b = model year parameters.

Chase calculated separate model year car survival functions for
1951 to 1968 model year vehicles. However, no attempt is made in
this model, as in Walker's model, to adjust total scrappage by exo-
genous factors, or to explain the differences in the parameters of
the survival functions for different model year vehicles.

In addition, neither Chase nor previous investigators had
looked at the effect of exogenous factors on the scrappage rates of
vehicles of various ages. In the Marketing and Mobility Panel
Report of the Motor Vehicle Goals Study (16), the influence of economic
factors, specifically new car prices and unemployment rate, on
scrappage rates of older cars is investigated. The arguments out-

1ined are that as new car prices rise, new cars become less
attractive, creating a tendency to postpone new car purchases and to
hold onto existing stock. Also, new car prices are assumed to be
positively related to used car prices, and a rise in new car

prices causes a rise in used car prices. This changes a consumer's
decision when to scrap or repair a vehicle.

The unemployment rate is included in the model as an indicator
of cyclical macroeconomic conditions. Thus, it is expected as
unemployment increases, scrappage would decrease.

The specific scrappage model developed assumes the scrappage
rates for each age of the first eight years of a vehicle's 1ife are
fixed at the average levels based on the 1957 to 1974 model year
Polk registration data. These average scrappage rates increase from
.2 percent for a one-year-old vehicle to 15.7 percent for an eight-
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year-old vehicle. For nine-year-old and clder vehicles, an adjust-
ment to the scrappage rate is calculated based on the following

formula:
SPGt = 0.40675 - 0.78433(Pn)t - 0.015519Ut
(9.856) (-1.911) (-3.052)
R = 6587 degrees in freedom = 10
(Pn)t = new car real price index Ut = unemployment rate in
in year t year t.

(parenthetical numbers are t-statistics based on the regression
estimates). SPGt is divided by the average scrappage rate for nine-
year or older vehicles and multiplied by the average scrappage rate
for a vehicle of a specific age to determine the adjusted scrappage
rate.

This model, originally developed by Jack Faucett Associates,
assumes, as do all the previous models, that each size category of
vehicles (market class) has the same average scrappage rates. How-
ever, the adjustment procedure is applied separately for each market
class of vehicle in their forecasting model. This allows unusual
average price changes in a single class to be reflected in the
scrappage of that class of vehicles alone.

Understanding the importance of accounting for yearly varia-
tions in the scrappage rates, Wharton Econometric Associates
constructed a complex scrappage model with annual adjustments (21).
Unlike the Faucett procedure, in the Wharton model the adjustment
factors are applied to the scrappage rates of all ages of vehicles.
The derivation of these adjustment factors is quite interesting.

Wharton first assumes that all vehicles are scrapped by the
end of their 20th year. The average scrappage rates
(qi’ i=0, ..., 20) for the first 20 years of vehicle life are cal-
culated from the 1953 to 1974 Polk registration data of vehicles in
operation. The adjustment factors are calculated numerically by a

recursive procedure beginning with1953. To begin the recursive
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procedure, the scrappage rates for the 20 years prior to 1953 are
assumed to be constant and equal to the average rates. The adjust-
ment factor for 1953 is then:

a . _ Actual total 1953 scrappage
1953 = Theoretical total 1953 scrappage

where the theoretical total 1953 scrappage equals:

20 i-1
qqN + g T (1-q;) N :
011953 © TN 4 i’ T1953-1

where: Nk number of new registrations in model year k.

q; average scrappage rate of vehicle of age i years.

the calculation for the adjustment factor for 1954 is:

a - Actual total 1954 scrappage
1954 Theoretical total 1954 scrappage

where the 1954 theoretical scrappage equals:
20
AQNyg54 * Z 95(T-2y9539;_1 My953

20 i-2
+ (1- . T (1-q, .
EZ 9;(1-299539;.1) i=0 (1-a5) Nyggg..;
The procedure is continued until all adjustment factors through 1974
are calculated.

Wharton notes in their documentation that for 1955 through 1957,
when new car demand was strong, scrappage rates were higher than
average. The adjustment factor drops sharply in the 1958 recession
period and climbs slowly through 1965, then fluctuates around one
through 1973 when new car demand was strong. The adjustment factor
falls significantly below one in 1974, a recession year.
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The forecast of adjustment factors in the Wharton model is
generated by the same recursive formula. Howevef, the actual total
scrappage in the formula is substituted by the estimated total
scrappage generated in the Wharton Automobile Demand Model. This
total scrappage equation is a function of new car registrations,
scrap metal prices, vehicle miles travelled, and other variables.
Thus, the adjustment factor would reflect these variables also.
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B.4 Application Models

Application models are those which utilize the
outbut of vehicle demand and survival models to investigate
automobile-related inpacts on safety, air quality, fuel consump-
tion, etc. Quite often an application model is built as a sub-
model to a vehicle demand and survival model. For example, the
Chase (3), EEA (8), Faucett (16), and Rand (25) models discussed
in section 2.3 have submodels to compute fleet fuel consumption.

The application models are usually-accounting models based
on a set of simplifying assumptions. As an example of how a
typical fuel consumption model is constructed, the Faucett model
is discussed here.

Historical data, the output of the Faucett vehicle demand,
survival, and market sharemodels are used to generate age dis-
tribution of the fleet of vehicles by three size categories.
Using these age distributions, vehicle miles travelled by
vehicle age is determined by an application of the age/VMT
relationship reported by the Federal Highway Administration,

as follows:
3
YMT (AGE)= t FLEET (SC,AGE) * 17.9729
sc=1

-9.57481 * L0Go (AGE)

Where: VMT(AGE)= vehicle miles travelled in a year for vehicles
of age, AGE.
SC = size class
FLEET(SC,AGE)= Number of cars in the fleet of size class,
SC and age, AGE.

Note that an assumption is made that each size class of vehicle
is driven the same average miles per year. The fuel economy of each

age of vehicle is computed by dividing the number of vehicles of
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that age by the sum of the division of the number of vehicles

in each size class of that age by the fuel economy for that size
class and vintage of vehicle. This is simply an averaging
procedure. Note that the fuel economy of a particular vehicle
is assumed not tochange with age. The total fuel consumption

is then calculated by summing the total miles travelled divided
by the fuel economy for each age of vehicle.

Many models with similar outputs as the application models
have been constructed but are not listed in the bibliography.
This is because these models do not require age distributions
of vehicles as inputs.
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APPENDIX C
Notes on the Weibull Distribution

The Weibull distribution was proposed in 1939 by Waloddi
Weibull, a professor at the Royal Institute of Technology in
Sweden, as an appropriate distribution to describe the 1ife length
of metals.* He formulated the distribution as follows:

Assume that we have a chain consisting of n links, and if
any link breaks (fails) then we say the chain as a whole fails.
Accordingly, the probability of nonfailure of the chain, (1-Pn),
is equal to the probability of the simultaneous nonfailure of all
the Tinks. Thus:

(1an) = (1-p)"

where:
P is the probability of failure of any link of the chain.
Considering only the class of failure distributions of the form:

P = F(x) = 1-e790%)

where:
x is a load level applied to a link.
then the probability of nonfailure of the chain is:
(]_pn) = (e'Q(X))n = e'nQ(X)
The simplest form of q(x) such that F(x) is a positive, nondecreas-
ing function, vanishing at a value X,y which is not necessarily
equal to zero, is:

q(x) = C(X-xu)b
and thus: b
F(x) = ]_e-c(x-xu) X$X,
The formula for nonfailure of the chain becomes:
b
o o-nc(x-x )
(1-Pn) e u X< X,

*This discussion is adapted from Weibull, "A Statistical Dis-
tribution Function of Wide Applicability," Journal of Applied
Mechanics, Vol. 18, p. 293-297, 1951.

95




If X, is set to zero, and nc is set to a, then:
b .
(1-P ) = S(x) = e (1)

which is the Weibull survival distribution (equation [6]) discussed
in Section 5.1

It is interesting that Weibull proposed this distribution
without recognizing that it is an extreme-value distribution. The
extreme-value random variable corresponding to the Weibull distribu-
tion is the weakest and/or shortest-lived component of a system of
components. Gumbell, in his book, The Stafistics of Extremes (38),
derives the Weibull distribution by applying a logarithmic
transformation to the random variable of the minimum extreme-value
distribution, as follows:

The density function for the minimum extreme value distribu-
tion is:

b(x-c) _e-b(x-c)

f(x) = be” e

If we make the change of variable x = 1n(1/t) and set c=1n(1/d),
then:

1 1
f(t) = %-e'b(]“(%) - ]n(%)) e_e'b(ln(z)- ]n(a))
b
t
= btb‘] (%.)b e-(a-)
If we let: X
(%? = a
then: b
£(t) = bat?"! 2t

which is the Weibull density function corresponding to the survival
distribution (i).
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Thus, as argued in Section 5.1, if a car is thought of as being
composed of several critical components such that the car is scrapped
when one of these components fails, then the lifetime distribution of
the car tends toward a Weibull. This is because, as presented above,
a Weibull distribution models the lifetime of the shortest-lived
component in a system of components.




APPENDIX D
REPORT OF INVENTIONS .

The objective of this study was to investigate the uncertain-
ties of predicting future automobile populations. To this end, two
components were added to an existing model of new car sales. The
first was a procedure of specifying uncertain future eveﬁts and their
effect on new car sales and other variables affecting the automobile
fleet. The second was an improved model of vehicle survival from
year to year. Both components were innovative in application, but
not entirely new inventions. As discussed in the report, the pro-
cedure of quantifying uncertainty is based on a method developed
and used by the Stanford Research Institute. The model of vehicle
survival depends on the Weibull distribution of statistics pro-
posed by Waloddi Weibull of Sweden.
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